

Web security:
SSL and TLS

2

What are SSL and TLS?

• SSL – Secure Socket Layer
• TLS – Transport Layer Security
• both provide a secure transport connection between

applications (e.g., a web server and a browser)
• SSL was developed by Netscape
• SSL version 3.0 has been implemented in many web browsers

(e.g., Netscape Navigator and MS Internet Explorer) and web
servers and widely used on the Internet

• SSL v3.0 was specified in an Internet Draft (1996)
• it evolved into TLS specified in RFC 2246
• TLS can be viewed as SSL v3.1

3

The Idea

• Encrypt the web traffic between two sites, so
no one can listen in and get credit card
numbers

• Uses something called “Secure Sockets Layer”
(SSL)

4

SSL components

• SSL Handshake Protocol
– negotiation of security algorithms and parameters
– key exchange
– server authentication and optionally client authentication

• SSL Record Protocol
– fragmentation
– compression
– message authentication and integrity protection
– encryption

• SSL Alert Protocol
– error messages (fatal alerts and warnings)

• SSL Change Cipher Spec Protocol
– a single message that indicates the end of the SSL handshake

5

The Implementation

• The secure web site includes a digital
certificate signed by some certificate
authority. The certificate includes the
server name, its public key, IP number, and
an expiration date. It is typically signed with
a 1024 bit key by the CA

• The list of certificate authorities that you
trust to identify people is available in
Netscape by clicking on the lock icon at top;
in IE, Internet Options->Content

6

How It Works

• The browser reads the site certificate; if it is
signed by one of the trusted certificate
authorities, browser accepts the certificate as
valid

• If the certificate is signed by some unknown
certificate authority, Netscape will ask you if
you want to trust the guy who signed it

7

How It Works (Basic Protocol)

• The browser negotiates a secure session using
something like the following protocol:

8

 1: A->B: hello

 2: B->A: Hi, I'm Bob, bobs-certificate

 3: A->B: prove it

 4: B->A: Alice, This Is bob

 { digest[Alice, This Is Bob] } bobs-private-key

 5: A->B: ok bob, here is a secret {secret} bobs-public-key

 6: B->A: {some message}secret-key

How It Works

• Step 1: your browser introduces itself to the
secure server

• Step 2: the server responds by sending back a
message with the certificate included

• Step 3: Your browser tells the secure site to
prove its identity, that it really is who it says it
is.

9

How It Works

• Step 4: The secure server proves who it is
by creating a message for the browser,
generating a “fingerprint” of that message,
and encrypting the “fingerprint” with the
private key that is matched to the public
key in the certificate. The browser
generates the “fingerprint” for the message
itself, then decrypts the “fingerprint”
generated by the server using the public
key provided in the certificate.

10

How It Works

• At this point the browser is sure that the
server is how it says it is. It can send it secret
messages encrypted with the public key
provided in the certificate. The server (and
only the server) can decrypt these messages,
because only it has the private key.

11

How It Works

• At this point what typically happens is that
the browser generates a session key using a
completely different encryption algorithm.
A new session key is generated for every
connection; this does not have to be a
public key algorithm. You can use any
encryption algorithm you like; usually a
faster conventional, non-PK algorithm is
used. This is usually 40 or 128 bits long in
Netscape.

12

How It Works

• You’ll use a completely different key for
encrypting traffic to the web site every time
you connect. This makes cracking
communication more difficult; you need to
discover the keys for every session rather than
just one key.

13

How SSL Works:
the Handshake in Detail

14

Server certificate and key exchange
messages

• certificate
– required for every key exchange method
– contains one or a chain of X.509 certificates
– may contain

• public RSA key suitable for encryption, or
• public RSA or DSS key suitable for signing only, or

• server_key_exchange
– sent only if the certificate does not contain enough information to complete the

key exchange (e.g., the certificate contains an RSA signing key only)
– may contain

• public RSA key (exponent and modulus), or

– digitally signed
• if DSS: SHA-1 hash of (client_random | server_random | server_params) is signed
• if RSA: MD5 hash and SHA-1 hash of (client_random | server_random | server_params)

are concatenated and encrypted with the private RSA key

15

Certificate request and server hello done
msgs

• certificate_request
– sent if the client needs to authenticate itself

– specifies which type of certificate is requested
(rsa_sign, dss_sign, …)

• server_hello_done
– sent to indicate that the server is finished its part of

the key exchange

– after sending this message the server waits for client
response

– the client should verify that the server provided a valid
certificate and the server parameters are acceptable

16

Client authentication and key exchange

• certificate
– sent only if requested by the server
– may contain

• public RSA or DSS key suitable for signing only, or

• client_key_exchange
– always sent
– may contain

• RSA encrypted pre-master secret, or

• certificate_verify
– sent only if the client sent a certificate
– provides client authentication
– contains signed hash of all the previous handshake messages

• if DSS: SHA-1 hash is signed
• if RSA: MD5 and SHA-1 hash is concatenated and encrypted with the private key

 MD5(master_secret | pad_2 | MD5(handshake_messages | master_secret | pad_1))

 SHA(master_secret | pad_2 | SHA(handshake_messages | master_secret | pad_1))

17

Finished messages

• finished
– sent immediately after the change_cipher_spec

message

– used to verify that the key exchange and
authentication was successful

– contains the MD5 and SHA-1 hash of all the previous
handshake messages:

 MD5(master_secret | pad_2 | MD5(handshake_messages | sender |
master_secret | pad_1)) |

 SHA(master_secret | pad_2 | SHA(handshake_messages | sender |
master_secret | pad_1))

 where “sender” is a code that identifies that the sender is the
client or the server

18

How SSL Achieves Confidentiality

• Create a secret key
– Based on information generated by the client with a secure

random number generator

• Use public keys to exchange the secret key
– The server sends its public key to the client

– The client encrypts the secret key with the server's public
key and sends it to the server

– The server decrypts the secret key information with the
server’s private key

• Encrypt and decrypt data with the secret key
– The client and server use the negotiated algorithm

19

Logistics

• To set up a secure server you need to get a
certificate. Most people go to verisign
(www.verisign.com). Verisign charges $350 for a
certificate for one web site; it is tied to that web
site name (eg www.nps.navy.mil). For commercial
entities they do a search of Dun & Bradstreet to
ensure who you are. This is good for one year.

• Other Certificate Authorities are
www.thawte.com ($125), or any of those listed as
signers in Netscape. You can set up your own CA
and sign your own certificates.

20

Web Server Configuration

• Secure servers listen on a different port by
default than normal web servers. A new
instance of the program should listen on
port 442 rather than port 80.

• To configure Apache: see
http://www.modssl.org. The legality of the
crypto package used is questionable if used
for commercial purposes; the algorithms
are encumbered with patent issues

21

Security Achieved by the
Secure Sockets Layer (SSL)

• Confidentiality
Encrypt data being sent between client and server, so that

passive wiretappers cannot read sensitive data.

• Integrity Protection
Protect against modification of messages by an active

wiretapper.

• Authentication
Verify that a peer is who they claim to be. Servers are usually

authenticated, and clients may be authenticated if
requested by servers

22

TCP/IP Protocol Stack With TLS/ SSL

23

TCP/IP Layer

Protocol

Application Layer

HTTP, IMAP, NNTP, Telnet,

FTP, etc.

 Secure Sockets

Layer

SSL

 Transport Layer

TCP

 Internet Layer

IP

